资源类型

期刊论文 24

年份

2022 3

2021 2

2020 1

2018 1

2017 3

2015 3

2014 3

2013 1

2012 2

2010 1

2009 1

2008 1

2001 1

展开 ︾

关键词

收缩 2

CCS 1

CO2-ECBM 1

X 射线成像 1

初应力 1

后压浆 1

图像解析法 1

复合树脂 1

工艺 1

干燥应力 1

干缩异向性 1

应力重分布 1

开裂风险 1

弦向应变 1

抑制技术 1

抗菌 1

收缩徐变 1

无收缩 1

机械性能 1

展开 ︾

检索范围:

排序: 展示方式:

Hydration, microstructure and autogenous shrinkage behaviors of cement mortars by addition of superabsorbent

Beibei SUN, Hao WU, Weimin SONG, Zhe LI, Jia YU

《结构与土木工程前沿(英文)》 2020年 第14卷 第5期   页码 1274-1284 doi: 10.1007/s11709-020-0656-x

摘要: Superabsorbent Polymer (SAP) has emerged as a topic of considerable interest in recent years. The present study systematically and quantitively investigated the effect of SAP on hydration, autogenous shrinkage, mechanical properties, and microstructure of cement mortars. Influences of SAP on hydration heat and autogenous shrinkage were studied by utilizing TAM AIR technology and a non-contact autogenous shrinkage test method. Scanning Electron Microscope (SEM) was employed to assess the microstructure evolution. Although SAP decreased the peak rate of hydration heat and retarded the hydration, it significantly increased the cumulative heat, indicating SAP helps promote the hydration. Hydration promotion caused by SAP mainly occurred in the deceleration period and attenuation period. SAP can significantly mitigate the autogenous shrinkage when the content ranged from 0 to 0.5%. Microstructure characteristics showed that pores and gaps were introduced when SAP was added. The microstructure difference caused by SAP contributed to the inferior mechanical behaviors of cement mortars treated by SAP.

关键词: Superabsorbent Polymer     mechanical properties     hydration heat     autogenous shrinkage     microstructure    

Contribution of CNTs/CNFs morphology to reduction of autogenous shrinkage of Portland cement paste

Feneuil BLANDINE, Karin HABERMEHI-CWIRZEN, Andrzej CWIRZEN

《结构与土木工程前沿(英文)》 2017年 第11卷 第2期   页码 255-255 doi: 10.1007/s11709-017-0395-9

Modelling autogenous expansion for magnesia concrete in arch dams

JIN Feng, LUO Xiaoqing, ZHANG Chuhan, ZHANG Guoxin

《结构与土木工程前沿(英文)》 2008年 第2卷 第3期   页码 211-218 doi: 10.1007/s11709-008-0025-7

摘要: Magnesia Concrete is a kind of expansive concrete used in Chinese hydraulic engineering more and more widely. To evaluate the effects of autogenous expansion on the stresses of arch dams, a simple model of autogenous expansion for Magnesia Concrete in dam engineering is presented. This model is based on three assumptions: 1) the total amount of autogenous expansion of Magnesia Concrete is related only to the properties of materials and mixing of concrete; 2) the autogenous expansion of Magnesia Concrete is irreversible due to the irreversibility of hydration reaction of Magnesia in the concrete; 3) the autogenous expansion strain rates of Magnesia Concrete bear a relation between temperature and residual Magnesia per unit volume of concrete. The model is verified by some experimental data of autogenous expansion of Magnesia Concrete and field-measured data of an arch dam in China. Embedded into finite element arch dam simulation software, this model is employed to simulate the effects of autogenous expansion of Magnesia Concrete in hydraulic engineering.

关键词: field-measured     irreversibility     temperature     irreversible     element arch    

Energy absorption potential of concrete floors containing secondary (shrinkage and temperature) reinforcements

K. S. SIVAKUMARAN,R. M. KOROL,Xiao FAN

《结构与土木工程前沿(英文)》 2014年 第8卷 第3期   页码 282-291 doi: 10.1007/s11709-014-0269-3

摘要: This paper experimentally investigates the energy absorption potential of two types of concrete floors, namely, normal density concrete and structural low-density concrete, containing secondary (shrinkage and temperature) reinforcements. The test program considered the following secondary reinforcements: 1) traditional welded-wire steel mesh, 2) steel fiber and 3) poly composite fiber. To estimate the extent to which crushing of floor slab materials would help absorb energy, a series of concrete penetration tests employing patch loading was undertaken on scaled down model slabs. Each concrete-secondary reinforcement combination considered slabs of 50 mm in depth with square plan dimensions ranging from 50 to 500 mm, resulting in a total of 30 test specimens. The first part of the paper discusses the test specimens, the test setup, and the test procedure. The second part of the paper presents the experimental results and establishes the energy absorption of different concrete- secondary reinforcement combinations. Sieve analysis results of the crushed specimens were used to derive a “work index” value that relates the pulverized particle size distributions to energy inputs. The work index values of concrete-secondary reinforcement systems can be used to assess the energy dissipation potential associated with such floor slabs in buildings undergoing progressive collapse. The results indicate that floors with secondary reinforcements could play an important role in helping arrest global progressive collapse.

关键词: concrete floors     structural low-density concrete     shrinkage and temperature reinforcements     energy absorption     penetration tests     sieve analysis    

Effect of concrete creep and shrinkage on tall hybrid-structures and its countermeasures

Pusheng SHEN, Hui FANG, Xinhong XIA

《结构与土木工程前沿(英文)》 2009年 第3卷 第2期   页码 234-239 doi: 10.1007/s11709-009-0020-7

摘要: This paper aims to study the different vertical displacements in tall hybrid-structures and the corresponding engineering measures. First, the method to calculate the different vertical displacements in tall hybrid-structures is presented. This method takes into account the effects of construction process by applying loads sequentially story by story. Based on the concrete creep and shrinkage calculation formula in American Concrete Institute (ACI) code, with the assumption that loads are increased linearly in members, the creep and shrinkage effects of members are analyzed by adopting two parameters named average load-aged coefficient and average age-last coefficient. The effects of steel ratio on members creep are analyzed by age-adjusted module method (AEMM). The effects that core-tube were constructed in advance to outer steel frame were also considered. Then, based on the sample calculation, the measures to effectively reduce the different vertical displacements in hybrid-structures are proposed. This method is simple and practical in the calculation of different vertical displacements in tall and super-tall hybrid-structures.

关键词: creep     shrinkage     construction process     hybrid-structure    

Effects of microfine aggregate in manufactured sand on bleeding and plastic shrinkage cracking of concrete

Branavan ARULMOLY; Chaminda KONTHESINGHA; Anura NANAYAKKARA

《结构与土木工程前沿(英文)》 2022年 第16卷 第11期   页码 1453-1473 doi: 10.1007/s11709-022-0877-2

摘要: Construction industries have started to utilize manufactured sand (MS) as an effective alternative for river sand in concrete. High-grade parent rocks are crushed to obtain MS, which also produces a considerable amount of microfine aggregate (MFA). The higher percentage of MFA could lead to both positive and negative effects on the performance of cement-based mixes. This research was done to examine the influence of varying MFA levels, specifically 0%, 3%, 6%, 9%, and 12% (by weight) as the partial replacements of MS on bleeding and plastic shrinkage cracking of concrete. In addition to the varying MFA levels, some concrete mixes also included fly ash (FA) and superplasticizer to investigate the effect of free-water content in the mixes. The bleeding test data were taken as on-site measurements, while the cracks from the plastic shrinkage cracking test were evaluated using an image processing technique. The results concluded that the MFA replacements and the effective water-to-cement ratio have a significant effect on the selected concrete properties. With the increasing replacement levels, cumulative bleeding and crack initiation life gradually decreased, while a progressive increase was observed for crack width, crack length, and crack area.

关键词: manufactured sand     fresh concrete     microfines     admixtures     shrinkage     cracking    

A comparative study of the mechanical properties, fracture behavior, creep, and shrinkage of chemically

Mahdi AREZOUMANDI, Mark EZZELL, Jeffery S VOLZ

《结构与土木工程前沿(英文)》 2014年 第8卷 第1期   页码 36-45 doi: 10.1007/s11709-014-0243-0

摘要: This study presents the results of an experimental investigation that compares the mechanical properties, fracture behavior, creep, and shrinkage of a chemically-based self-consolidating concrete (SCC) mix with that of a corresponding conventional concrete (CC) mix. The CC and SCC mix designs followed conventional proportioning in terms of aggregate type and content, cement content, air content, water-cementitiuos materials ( / ) ratio, and workability. Then, using only chemical admixtures, the authors converted the CC mix to an SCC mix with all of the necessary passing, filling, flowability, and stability requirements typically found in SCC. The high fluidity was achieved with a polycarboxylate-based high-range water-reducing admixture, while the enhanced stability was accomplished with an organic, polymer-based viscosity-modifying admixture. The comparison indicated that the SCC and CC mixes had virtually identical tensile splitting strengths, flexural strengths, creep, and shrinkage. However, the SCC mix showed higher compressive strengths and fracture energies than the corresponding CC mix.

关键词: admixture     conventional concrete (CC)     creep     fracture mechanic     mechanical Properties     self-consolidating concrete (SCC)     shrinkage    

Autogenous healing mechanism of cement-based materials

《结构与土木工程前沿(英文)》   页码 948-963 doi: 10.1007/s11709-023-0960-3

摘要: Autogenous self-healing is the innate and fundamental repair capability of cement-based materials for healing cracks. Many researchers have investigated factors that influence autogenous healing. However, systematic research on the autogenous healing mechanism of cement-based materials is lacking. The healing process mainly involves a chemical process, including further hydration of unhydrated cement and carbonation of calcium oxide and calcium hydroxide. Hence, the autogenous healing process is influenced by the material constituents of the cement composite and the ambient environment. In this study, different factors influencing the healing process of cement-based materials were investigated. Scanning electron microscopy and optical microscopy were used to examine the autogenous healing mechanism, and the maximum healing capacity was assessed. Furthermore, detailed theoretical analysis and quantitative detection of autogenous healing were conducted. This study provides a valuable reference for developing an improved healing technique for cement-based composites.

关键词: autogenous healing     cement-based materials     healing mechanism     aggregation effect    

Influence of recycled polyethylene terephthalate fibres on plastic shrinkage and mechanical properties

Necat ÖZAŞIK; Özgür EREN

《结构与土木工程前沿(英文)》 2022年 第16卷 第6期   页码 792-802 doi: 10.1007/s11709-022-0849-6

摘要: Polyethylene terephthalate bottles production has drastically increased year after year due to high versatility of polyethylene terephthalate plastics and considerable consumption of beverages. In tandem with that increase, the major concern of society has been the improper disposal of this non-biodegradable material to the environment. To deal with this concern, recycled polyethylene terephthalate bottles were incorporated in concrete as fibre reinforcements in this study. The objective of this research is to evaluate the mechanical properties of recycled polyethylene terephthalate fibre reinforced concrete (RPFRC) in comparison with control concrete without fibres. polyethylene terephthalate fibres with three different diameters (0.45, 0.65, and 1.0 mm) and two lengths (20 and 30 mm) were added at various proportions (0.5%, 1.0%, 1.5% and 2.0%) by volume of concrete in order to determine the effect of fibres initially on compressive, flexural and splitting tensile strengths of concrete. The results revealed that none of the fibres have detrimental effects up to 1% volume fraction, however further addition caused slight reductions on mechanical properties in some conditions. Plastic shrinkage resistance and impact resistance tests were also performed according to related standards. Polyethylene terephthalate fibres were observed to have marked improvements on those properties. Such a good performance could be attributed primarily to the bridging effect of fibres.

关键词: recycled PET     fibre-reinforced concrete     mechanical properties     plastic shrinkage     impact energy    

现代混凝土收缩开裂的评估方法与控制关键技术 Article

刘加平, 田倩, 王育江, 李华, 徐文

《工程(英文)》 2021年 第7卷 第3期   页码 348-357 doi: 10.1016/j.eng.2021.01.006

摘要:

现代混凝土组成日趋复杂、收缩加大、结构约束增强,导致收缩开裂问题突出,严重影响构筑物的服役性能和使用寿命。本文以胶凝材料体系水化程度作为材料与环境温湿度交互作用的基本状态变量,提出了复杂胶凝材料体系水化反应活化能的计算方法,建立了水化-温度-湿度-约束耦合作用模型,实现了多种收缩的耦合计算和开裂风险的量化评估;介绍了水化温升抑制、全过程补偿收缩和化学减缩三项关键技术的作用机理及效果,这些技术能够有针对性地降低混凝土的温降收缩、自收缩和干燥收缩;在此基础上,提出了高抗裂混凝土的设计方法,采用该方法后,全过程控制开裂风险系数小于阈值;最后介绍了典型的工程应用案例,结果表明,采用所提出的方法和技术能够显著抑制甚至避免实际工程中收缩裂缝的产生。

关键词: 现代混凝土     收缩     水化程度     抑制技术     开裂风险    

Feasibility of crack free reinforced concrete bridge deck from materials composition perspective: a state of the art review

Mahdi AREZOUMANDI

《结构与土木工程前沿(英文)》 2015年 第9卷 第1期   页码 91-103 doi: 10.1007/s11709-015-0274-1

摘要: Early age cracking on bridge deck has been the subject of many studies for years. Cracking is a major concern because it leads to premature deterioration of structures. Millions of dollars spent to repair the cracked bridge decks each year. To design an appropriate mixture for crack free bridge deck, it is important to study previous researches. This paper presents a comprehensive literature review of the performance of different materials compositions as well as methods have been used to reduce and control bridge deck cracks. Different material compositions and methods are discussed in terms of their performances as well as advantages and disadvantages.

关键词: bridge deck     crack     fiber     shrinkage     shrinkage reducing admixture    

Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite short

Jonnathan D. SANTOS,Jorge I. FAJARDO,Alvaro R. CUJI,Jaime A. GARCÍA,Luis E. GARZÓN,Luis M. LÓPEZ

《机械工程前沿(英文)》 2015年 第10卷 第3期   页码 287-293 doi: 10.1007/s11465-015-0346-x

摘要:

A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.

关键词: biocomposite     natural fiber     shrinkage     simulation     warpage    

highly undersampled MR image reconstruction using patch-based constraint splitting augmented Lagrangian shrinkage

Min YUAN,Bing-xin YANG,Yi-de MA,Jiu-wen ZHANG,Fu-xiang LU,Tong-feng ZHANG

《信息与电子工程前沿(英文)》 2015年 第16卷 第12期   页码 1069-1087 doi: 10.1631/FITEE.1400423

摘要: Recently, dictionary learning (DL) based methods have been introduced to compressed sensing magnetic resonance imaging (CS-MRI), which outperforms pre-defined analytic sparse priors. However, single-scale trained dictionary directly from image patches is incapable of representing image features from multi-scale, multi-directional perspective, which influences the reconstruction performance. In this paper, incorporating the superior multi-scale properties of uniform discrete curvelet transform (UDCT) with the data matching adaptability of trained dictionaries, we propose a flexible sparsity framework to allow sparser representation and prominent hierarchical essential features capture for magnetic resonance (MR) images. Multi-scale decomposition is implemented by using UDCT due to its prominent properties of lower redundancy ratio, hierarchical data structure, and ease of implementation. Each sub-dictionary of different sub-bands is trained independently to form the multi-scale dictionaries. Corresponding to this brand-new sparsity model, we modify the constraint splitting augmented Lagrangian shrinkage algorithm (C-SALSA) as patch-based C-SALSA (PB C-SALSA) to solve the constraint optimization problem of regularized image reconstruction. Experimental results demonstrate that the trained sub-dictionaries at different scales, enforcing sparsity at multiple scales, can then be efficiently used for MRI reconstruction to obtain satisfactory results with further reduced undersampling rate. Multi-scale UDCT dictionaries potentially outperform both single-scale trained dictionaries and multi-scale analytic transforms. Our proposed sparsity model achieves sparser representation for reconstructed data, which results in fast convergence of reconstruction exploiting PB C-SALSA. Simulation results demonstrate that the proposed method outperforms conventional CS-MRI methods in maintaining intrinsic properties, eliminating aliasing, reducing unexpected artifacts, and removing noise. It can achieve comparable performance of reconstruction with the state-of-the-art methods even under substantially high undersampling factors.

关键词: Compressed sensing (CS)     Magnetic resonance imaging (MRI)     Uniform discrete curvelet transform (UDCT)     Multi-scale dictionary learning (MSDL)     Patch-based constraint splitting augmented Lagrangian shrinkage algorithm (PB C-SALSA)    

Modeling of coal swelling induced by water vapor adsorption

Zhejun PAN

《化学科学与工程前沿(英文)》 2012年 第6卷 第1期   页码 94-103 doi: 10.1007/s11705-011-1172-2

摘要: Gas adsorption-induced coal swelling is a well-know phenomenon. Coal swelling or shrinkage by adsorption or desorption of water vapor has not been well understood but has significant implications on gas drainage process for underground coal mining and for primary and enhanced coalbed methane production. Decreased matrix moisture content leads to coal shrinkage and thus the change of cleat porosity and permeability under reservoir conditions. Unlike gas adsorption in coal which usually forms a single layer of adsorbed molecules, water vapor adsorption in the coal micropores forms multilayer of adsorbed molecules. In this work, a model has been developed to describe the coal swelling strain with respect to the amount of moisture intake by the coal matrix. The model extended an energy balance approach for gas adsorption-induced coal swelling to water vapor adsorption-induced coal swelling, assuming that only the first layer of adsorbed molecules of the multilayer adsorption changes the surface energy, which thus causes coal to swell. The model is applied to describe the experimental swelling strain data measured on an Australian coal. The results show good agreement between the model and the experimental data.

关键词: multilayer adsorption     vapour pressure     coal shrinkage     relative humidity     permeability    

钢管混凝土劲性骨架拱桥收缩徐变影响理论研究

谢肖礼,秦荣,彭文立,邓志恒

《中国工程科学》 2001年 第3卷 第3期   页码 80-84

摘要:

采用混凝土徐变理论、变形协调、中值理论及平衡条件,并考虑混凝土的弹性后效及受四周约束作用的徐变特性,导出了混凝土徐变、收缩引起的截面应力重分布的表达式。公式简单,应用方便,并对万县长江大桥收缩、徐变模型试验进行分析,所得结果与模型试验较为吻合,同时指出了影响该桥型应力的主要因素。

关键词: 钢管混凝土劲性骨架     收缩徐变     初应力     应力重分布    

标题 作者 时间 类型 操作

Hydration, microstructure and autogenous shrinkage behaviors of cement mortars by addition of superabsorbent

Beibei SUN, Hao WU, Weimin SONG, Zhe LI, Jia YU

期刊论文

Contribution of CNTs/CNFs morphology to reduction of autogenous shrinkage of Portland cement paste

Feneuil BLANDINE, Karin HABERMEHI-CWIRZEN, Andrzej CWIRZEN

期刊论文

Modelling autogenous expansion for magnesia concrete in arch dams

JIN Feng, LUO Xiaoqing, ZHANG Chuhan, ZHANG Guoxin

期刊论文

Energy absorption potential of concrete floors containing secondary (shrinkage and temperature) reinforcements

K. S. SIVAKUMARAN,R. M. KOROL,Xiao FAN

期刊论文

Effect of concrete creep and shrinkage on tall hybrid-structures and its countermeasures

Pusheng SHEN, Hui FANG, Xinhong XIA

期刊论文

Effects of microfine aggregate in manufactured sand on bleeding and plastic shrinkage cracking of concrete

Branavan ARULMOLY; Chaminda KONTHESINGHA; Anura NANAYAKKARA

期刊论文

A comparative study of the mechanical properties, fracture behavior, creep, and shrinkage of chemically

Mahdi AREZOUMANDI, Mark EZZELL, Jeffery S VOLZ

期刊论文

Autogenous healing mechanism of cement-based materials

期刊论文

Influence of recycled polyethylene terephthalate fibres on plastic shrinkage and mechanical properties

Necat ÖZAŞIK; Özgür EREN

期刊论文

现代混凝土收缩开裂的评估方法与控制关键技术

刘加平, 田倩, 王育江, 李华, 徐文

期刊论文

Feasibility of crack free reinforced concrete bridge deck from materials composition perspective: a state of the art review

Mahdi AREZOUMANDI

期刊论文

Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite short

Jonnathan D. SANTOS,Jorge I. FAJARDO,Alvaro R. CUJI,Jaime A. GARCÍA,Luis E. GARZÓN,Luis M. LÓPEZ

期刊论文

highly undersampled MR image reconstruction using patch-based constraint splitting augmented Lagrangian shrinkage

Min YUAN,Bing-xin YANG,Yi-de MA,Jiu-wen ZHANG,Fu-xiang LU,Tong-feng ZHANG

期刊论文

Modeling of coal swelling induced by water vapor adsorption

Zhejun PAN

期刊论文

钢管混凝土劲性骨架拱桥收缩徐变影响理论研究

谢肖礼,秦荣,彭文立,邓志恒

期刊论文